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Abstract
Background—Alzheimer’s disease (AD) is the most common dementing illness. Development
of effective treatments directed at AD requires an early diagnosis. Mild cognitive impairment
(MCI) often heralds AD. Thus, characterizing MCI is fundamental to the early diagnosis of AD.

Participants—Nineteen MCI patients referred from a memory loss clinic and 27 healthy
subjects, all followed for 3 years.

Method—Metabolism scans (MCI minus controls) were compared voxel-wise after anatomical
normalization and were examined both visually and with a computerized classifier.

Results—Agreement between raters as to whether the individual scans were normal or abnormal
was high. Agreement between raters of the eventual clinical diagnosis and baseline metabolic
pattern was poor. A computerized classifier was unsuccessful at classifying MCI from normal;
however, its performance improved when using only prototypic AD-like MCI scans, indicating the
classifier worked well when shared patterns existed in the data. Outcomes on follow-up were 9/19
AD; 5/19 remained MCI; and 5/19 developed dementias other than AD. Both cases of early Lewy
body dementia (LBD) showed an AD-like metabolic pattern.

Conclusions—Visual inspection proved reliable in determining normal from abnormal scans;
but it proved unreliable at predicting diagnosis on follow-up. Computerized classification of MCI
using an AD-like metabolic template (such as derived from the averaged MCI images) showed
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potential to identify patients that will develop AD. However, the metabolic pattern in early LBD
did not differ from that in AD.
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dementia; Lewy body; aging; classification

1. Introduction
Mild cognitive impairment (MCI) is considered a transitional phase between healthy
cognitive aging and Alzheimer’s disease (AD). It is diagnosed when a patient (1) has
memory complaints; 2) shows a decline greater than 1.5 standard deviations from the age-
and education-adjusted mean in declarative memory scores as assessed by
neuropsychological testing; 3) has intact general cognition; 4) shows normal activities of
daily living; and 5) does not have dementia [1]. From the initial emphasis on verbal
memory, now termed amnestic MCI, the concept has been extended to include multiple-
domain MCI and single-domain, non-amnestic MCI [2]. Approximately 20% of individuals
over age 70 years have MCI with the incidence rising to almost half of those 80 years or
older.

Pharmaceutical agents to prevent or treat AD are under development. Such drugs have the
greatest opportunity to treat AD before the disease has progressed to the stage where
extensive brain damage has occurred. The diagnosis of MCI is a frequent inclusion criterion
for such drug studies. It is assumed to represent a prodrome to AD. Therefore, structural and
functional characterization of MCI is important to the early diagnosis of AD.

MCI can be distinguished both structurally and functionally from healthy aging. For
example, MCI patients show loss of grey matter and enlarged ventricles [3]. The greatest
change occurs in the hippocampus and medial temporal cortex, but it can also include
medial prefrontal cortex, posterior cingulate cortex (PCC), orbitofrontal cortices, insula;
uncus, ([4] and others). Functionally, hypometabolism localizes to the PCC and parietal
cortex as well as to the medial temporal lobe [5–13]. In contrast, grey matter density
declines during normal aging in the dorsal prefrontal and parietal cortices, [14]. The major
decline in brain metabolism with age in healthy subjects localizes to the anterior cingulate
cortex (ACC) and adjacent regions ([15] and reviewed therein).

While the changes in MCI differ clearly from healthy aging, MCI patients share many
features with AD. At the most basic level, the neuropathology of MCI appears to be that of
AD (16–17). Additionally, FDG PET studies have shown that those MCI patients who later
develop probable AD show metabolic reductions similar to those found in AD. For example,
eight MCI patients who later converted to probable AD showed reduction in the PCC and
cinguloparietal cortices at their baseline evaluation [8]. Impaired baseline metabolism in the
left parietotemporal region of MCI patients predicted those who progressed over 3 years
[18]. During the examination of 30 MCI patients over 16 months, 13 patients showed an AD
pattern of hypometabolism, 11 of these converted to AD, while 16 of the 17patients without
the AD pattern remained stable [13]. Likewise, in a large series of 284 patients undergoing
evaluation for dementia, the pattern of hypometabolism had predictive power. FDG PET
was able to predict deterioration over a 3.2 year follow-up period with a sensitivity of 91%
and a specificity of 75% [19]. These studies suggest that MCI patients with AD-like
metabolic changes tend to progress and convert to AD.
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The clinical course of MCI is variable. Overall, MCI patients have greater cognitive decline
than normal subjects and show less decline than AD patients [1]. Whereas 1–2% of normal
elderly convert to AD per year, approximately 10–15% of MCI patients convert to AD per
year. Therefore, MCI represents at least a group at high risk of converting to AD. It is
important to note that the original criteria for MCI are based upon a clinical sample, i.e.,
those presenting to clinicians with memory complaints. These criteria do not perform as well
in population based studies where interviewers ask subjects about memory complaints [20–
21]. The diagnosis appears unstable in such studies with as many as 25% of MCI subjects
reverting to normal during a follow-up interval of 10 years [22].

Imaging studies suggest metabolic heterogeneity within MCI itself. Using FDG PET, only
43% of MCI patients exhibited a pattern consistent with AD [13]. A large multicenter study
using 114 MCI patients and 110 healthy elderly subjects found an AD pattern by FDG PET
in 79% of multiple-domain MCI patients but only 31% of amnestic MCI patients [7].
Amyloid deposition and hypometabolism as assessed by PET showed concordance in 54%
of MCI cases [23]. Similarly, only half of MCI patients showed detectable amyloid
deposition or microglial activation as assessed with PET [24].

The present study compared FDG PET images in MCI patients referred from a memory loss
clinic with a control, normative database of carefully screened subjects. The objective was to
determine whether MCI patients could be reliably classified from healthy controls, and if so,
could the follow-up diagnoses be determined by the baseline findings. The MCI and control
images were interpreted both visually and also processed though a support vector machine
(SVM). SVM uses a kernel function to map the data into an infinite-dimensional space,
where a hyperplane can be used to do the separation. This allows SVM models to perform
separations even when the boundary between the classes is very complex, and even when
classes with few samples or samples have high-dimensionality feature vectors. The patients
were followed for 3 years after the PET scan.

2. Methods
2.1. Human subjects

The characterization of the control subjects has been described previously [15]. Briefly, they
were recruited from the community and underwent extensive medical and laboratory
examination. They were assessed free of lifetime history of psychiatric disorders using a
structured diagnostic interview. All magnetic resonance images (MRI) were considered
normal for age.

The MCI patients were referred for imaging from the memory loss in the Geriatric,
Research, Education, and Clinical Center (GRECC) at the Minneapolis Veterans Affairs
Medical Center (MVAMC) in Minneapolis, MN. The diagnosis of MCI was made according
to the criteria of Petersen et al. [1] after an extensive evaluation including
neuropsychological testing and medical evaluation. All but one female were white male
veterans. The ages ranged from 54–85 years (mean = 80).

All subjects gave informed consent approved by the Institutional Review Board (IRB) of
both the VAMC and the University of Minnesota. The MVAMC’s Radiation Drug
Committee (RDRC) also evaluated the protocols and dosimetry for consistency with FDA
guidelines.

Because of the possibility that control subjects were incorrectly classified as normal controls
and could later become symptomatic for AD [25], all controls were reevaluated at ~2–3
years after the scan using the Minnesota Cognitive Acuity Screen (MCAS, [26]). All of

Pardo et al. Page 3

Alzheimers Dement. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



those screened as cognitively impaired at 2–3 years were removed from the control dataset.
The final normal control dataset consisted of 27 subjects (12 females) with ages 41–94 years
(mean = 72).

2.2. PET imaging
The methods have been described previously [15]. Briefly, after an overnight fast, subjects
received an intravenous injection of 18F-FDG at a dose of 5 mCi/70 kg, as they reclined with
eyes closed and ears open in a quiet dark room. After a 30 min uptake period, they were
transferred to an ECAT 953B or ECAT Exact scanner (Siemens, Knoxville, TN).
Attenuation was measured. No arterial catheters were used for absolute quantitation.

2.3. PET scan processing and analysis
PET scans were adjusted to a whole-brain mean activity and stereotactically normalized
using Neurostat (S. Minoshima, University of Washington, Seattle, WA). This software has
been validated [27–29] and has been used in several studies of aging and AD [e.g., 7–
8,13,15]. Each patient’s scan was compared voxel-wise to the normative dataset after age
regression to generate difference images. Each control subject’s scan was compared to the
remainder of the control scans using the leave-one-out method with replacement. The color
scale for viewing the data ranged from purple (minimum hypometabolism displayed, t = −2)
to white (maximal hypometabolism displayed, t = −6). One blinded reader (JVP) examined
the scans using only the transverse sections. The other blinded reader (MAK) used iiV [30]
to examine the images. This program displayed all perspectives (coronal, sagittal, and
transverse) containing a point of interest selected by the user.

The patterns of metabolic change were identified visually by the readers according to criteria
reported widely [5–13]. The AD pattern was identified by hypometabolism in the medial
parietal cortex and lateral parietal regions. The medial parietal involvement could include
posterior cingulate, retrosplenial cortex, or precuneus. The lateral parietal regions included
mostly inferior parietal regions (supramarginal gyrus) with extension into superior parietal
cortex and lateral temporal cortex. The FTD pattern was identified by hypometabolism in
anterior/superior temporal cortex and mesial/lateral prefrontal cortex, especially with greater
involvement in the left than in the right sides. Because there is no pathognomonic feature for
early LBD, no attempt was made to classify it unless occipital hypometabolism was present
which occurred in no one.

2.4. Support vector machine
These analyses were done on the first 13 MCI cases and 15 controls. The SVM classifier
was run on SVMLight [31] using a radial basis function. The parameters for the function
were chosen through cross-validation using a toolkit called LIBSVM [32]. Feature selection
was accomplished using the fselect tool which measures the “f-score,” a simple calculation
used to measure the discrimination between two sets of numbers [33]. The entire brain was
re-sampled into 3 ×3 × 3 cubic voxels (voxel dimension = 2.25 mm) to minimize
computation time. Two features, lobe and cluster, were defined. The lobar features came
from the Talairach daemon yielding 12 regions, six in each hemisphere [34]. A brain lobe
was labeled as MCI or normal if ≥50% of the cubes had the label MCI or normal,
respectively. The cluster feature used a template based upon the average image of the MCI
subjects (Fig. 1). Each cluster or connected region was identified using a t threshold of 2.
Each sample cube gave 7 first-order statistics on the counts observed: sum, maximum,
minimum, mean, median, standard deviation, and variance. Additional second order features
included entropy, energy, contrast, and homogeneity [35]. Classification used a cluster-by-
cluster approach as well as a whole-brain approach and leave-one-out cross-validation.
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3. Results
3.1. Baseline and follow-up diagnoses of MCI patients at 3 years

Table 1 shows the baseline clinical diagnoses of all MCI patients as well as their diagnoses
at 3 years. As noted, 11/19 subjects had amnestic MCI with four of these having deficits in
multiple domains. On follow-up at three years, nine of nineteen (47%) MCI patients
converted to probable or possible AD. Two of nineteen (~10%) patients converted to
probable Lewy body dementia (LDB), one of which was autopsy verified. Another two
cases converted to probable FTD. Case p0083 converted to dementia, not otherwise
specified. Five of nineteen (26%) remained labeled as MCI. Over the three years, four
deaths occurred involving one probable AD case, one definite LBD case (autopsy verified),
1 FTD case, and p0083 (dementia, NOS).

3.2. Visual inspection of the difference images
The two independent blinded raters experienced in PET assessed each difference image as
normal or abnormal, and if abnormal, whether having an AD or FTD pattern. This would be
the most straight forward approach in a clinical setting. Figure 1 shows the average of all
MCI patients minus the average of all normal subjects. This average corresponds to the
typical AD-like pattern in the literature. However, heterogeneity in metabolic patterns was
evident in individual cases. For an example, Figure 2 shows baseline examinations of three
MCI subjects-- one showing the AD-like pattern, one without any pattern, and another with
an FTD-like pattern. Table 2 shows the agreement between different rater’s classifications.
The agreement (kappa, κ) between the initial diagnostic label and the observed PET pattern
was low for both raters [JVP: κ = 0.40, SE = 0.14, p < 0.006 (vs. κ = 0); MAK: κ = 0.55, SE
= 0.13, p < 0.001 (vs. κ = 0)]. The inter-rater agreement for classifying images as normal or
not normal was high despite each rater using slightly different approaches to examine the
data [(JVP vs. MAK for the rating of all normal subjects as “normal” vs. “not normal: κ =
0.86, SE = 0.08, p < 0.001; i.e., agreement on 43 of 46 normal subjects); (JVP vs. MAK for
the rating of all MCI subjects as “normal” vs. “not normal”: κ = 0.66, SE = 0.17, p < 0.002;
i.e., agreement on 16 of 19 MCI patients)].

To address the issue of whether baseline classification predicted outcome at three years,
Table 1 shows the baseline classification by both raters along with the clinical diagnosis at 3
years of follow-up. Seven of nineteen cases (p0047, p0078, p0093, p0094, p0100, p0102,
p0106) showed agreement across both raters. Of these, 3 cases (p0094, p0102, and p0106)
were classified as normal but were diagnosed on follow-up as probable or possible AD.
Cases p0078 and p0093 were classified by both raters as AD, but on follow-up were
diagnosed as definite LBD and probable LBD, respectively. Case p0100 was classified by
both raters as FTD, and the follow-up diagnosis was FTD. Therefore, baseline classification
of MCI scans by visual analysis did not reliably predict outcome at 3 years, particularly in
trying to differentiate early AD from early LBD.

3.3 Support vector machine
The clusters were defined based on the average t-image between all MCI (N = 19) subjects
contrasted with normal controls (N = 27) to provide an MCI template. Figure 1 shows the
individual clusters from this averaged difference image. The first classification experiment
used the clinical diagnosis (MCI, normal) to label each scan. Using a 3 × 3 × 3 cubes, whole
brain and lobar analysis yielded overall a sensitivity of 62% and a specificity of 83%.
Analysis using individual clusters did not work well; each brain was classified as normal.

The second classification approach used training labels based upon the pattern in the image,
not on clinical diagnosis. Since MCI criteria may result in a heterogeneous group of patients,
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the next classification used prototypic examples. All difference images of each MCI patient
vs. controls were reviewed visually. The control images were selected based on their having
no significant differences (i.e., t < 2) from the rest of the controls (N = 15/27). The MCI
images were selected as AD-like based on their having hypometabolism in the PCC and in at
least one unilateral parietal lobe (e.g., Fig. 1; N = 5/19; pL0024, pL0025, pL0078, pL0083,
and pL0093). The average image of the preselected MCI scans minus pre-selected controls
showed only one right parietal focus large enough to use as a cluster (Figure 1, cluster #3,
176 valid cubes). This cluster showed an overall classification accuracy of 90% with 100%
sensitivity and 86% specificity. Whole-brain classification with lobar segmentation yielded
accuracies between 85–90%. Because of the small number of MCI prototypic scans, a low
sensitivity was observed when 2/5 cases were misclassified. These results may be improved
with more cases for training.

4. Discussion
4.1. Clinical outcomes at 3 years

As expected, the most frequent outcome was AD (47%) or MCI (26%). Probably with
continued follow-up, more of the MCI cases would have converted to AD. Given the age
range of the sample, the frequencies of conversion to FTD (~10%) and LBD (~10%) are not
inconsistent with other prevalence estimates [36].

4.2. Visual classification of MCI vs. Normal FDG PET scans
There was good inter-rater agreement of FDG PET scans classified by visual inspection as
“normal” vs. “not normal.” Assuming most neuropsychiatric disorders have signal-to-noise
ratios in the image similar in magnitude to that seen in MCI patients, a clinician could be
informed as to whether any specific patient has or does not have a normal scan. This may be
helpful when there are no clues to diagnosis or evidence for pathology without other
findings. Patients with negative scans are unlikely to progress (discussed in Introduction).
However, in the present series, both raters identified 3/19 MCI patients as showing the
healthy control pattern, yet at three years, these patients progressed to probable or possible
AD.

There was poor agreement for both raters between diagnosis at three years and baseline
FDG scans identified by the initial label (MCI vs. Normal) and classified as to PET pattern
(Normal, AD, FTD). This suggests that labeling scans as MCI or Normal did not produce a
population with consistent patterns in the FDG PET images. Indeed, 26% of the MCI sample
on follow-up at three years had probable dementias other than AD. When others have used
the AD pattern as a template, a considerable fraction of MCI patients do not show the AD
pattern.

The large number of MCI patients who did not convert to AD or did not show the AD
hypometabolic pattern appears counter-intuitive given the predominant finding that the
pathology of MCI is that of AD [16,17]. The follow-up interval in this study was short, and
more cases of conversion to AD would be expected with time. We used diagnoses as
endpoints, where longitudinal cognitive scores could show progressive deterioration despite
persistence of the MCI diagnosis. Also, clinicians may have referred cases with more
complex or atypical presentation; this series was not serial. However, this sample was also
different than those studied for pathology. The study by Morris et al. (2001) used CDR 0.5
rather than MCI criteria [16]. The equivalence of these two diagnostic approaches is unclear.
In the study by Markesbery (2006), control subjects with Braak stages III or higher were
excluded, which could bias the differences between AD and controls [17]. Also, the mean
time between diagnosis and death for MCI cases was 2 years. Only four of the cases
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presented here died in the subsequent three years. Therefore, MCI is clearly enriched in
those who will convert to AD, but patients fitting these criteria can develop other dementias.
Differences between MCI groups probably reflect differences in the recruitment method and
definitions.

4.3. Support vector machine classification
SVM classification based upon the clinical diagnosis of MCI does not produce a population
with a consistent pattern in FDG PET scans. The highest accuracy achieved by cluster
classification was 67%, and the highest whole-brain classification was 76%. No model
produced both a high sensitivity and a high specificity.

This conclusion is consistent with other published literature. For example, Drezega et al.
found only 43% of MCI patients had PET scans suggestive of AD pathology [13]. The study
also showed that 85% of those with the hypometabolic AD pattern converted to AD with a
mean follow-up of 16 months, while those without such a pattern remained largely stable at
follow-up (94%). Similarly, a more recent, large, multi-center study found 76% of multi-
domain MCI showed the AD pattern, while only 31% of amnestic MCI showed the pattern
[7]. The greater prevalence of the AD pattern in the multiple-domain MCI group is
consistent with its more aggressive course compared to purely amnestic MCI [37].

Using structural atrophy as quantitated by grey matter density from structural MRI images
from the ADNI dataset, Fan et al. used three groups: AD, MCI, and normal subjects [4].
They trained an SVM classifier to optimally separate AD from normal subjects. Using this
classifier, they found that 1/3 of MCI patients did not have the AD pattern of atrophy. The
AD-like MCI patients showed greater change scores in the Mini-Mental Status Examination
than did the MCI patients without the AD structural pattern. No follow-up was reported.
Their approach differed from that here in that the present study did not use AD patients to
generate a template but attempted to initially classify MCI from normal controls directly.
The improved classification based upon separation of AD from controls (that of Fan et al.)
when compared to separation of MCI from controls (the case here) suggests the AD pattern
is the dominant feature in MCI. In other words, there is no other metabolic signature in MCI
patients.

Indeed, the selection of prototypes from the present dataset helped SVM to classify MCI
from normal controls. When MCI images were pre-selected showing at least some
prototypic AD-like patterns as well as control images that were clearly void of any signals
when compared to the other controls, the best performing models had accuracies of 90%
with either lobar or cluster feature analysis even with the limited number of scans after
selection. This confirmed that SVM was in fact working properly. The right parietal cluster
was the sole feature in the cluster analysis. However, the very small number of images
produced by the pre-selection of prototypes yielded poor sensitivities and specificities. The
loss of so many images suspicious for artifacts or other signals in selecting prototypic
images underscores the importance of preventing motion during scanning, which can be
particularly difficult for the elderly (especially since many current scanners do not have
LIST mode capabilities, i.e., collection of data in sequential blocks of time enabling
recovery of data when motion occurs). Additionally, accurate anatomical standardization
becomes more important in the face of increased ventricular and sulcal volumes.

4.4. Limitations of the study
The sample size of 19 MCI patients and 27 control subjects may limit the generalizability of
the results. Larger samples would improve computerized classification based on machine
learning from exemplars. The MCI subjects were recruited from a memory loss clinic in the
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GRECC program at a VA Medical Center. All MCI subjects but one were male. Both the
source of the subjects and their gender may limit generalizability of the results to other types
of clinics or female subjects. Intersubject registration methods and machine learning
algorithms are rapidly evolving and may provide improved signal-to-noise ratios in the
processed images. Selection of other SVM parameters and software might improve the
robustness of the classification. However, the present implementation worked fine with the
selected a priori prototypic images. The results of this study depend also on the technology
used for imaging. More modern PET scanners with higher resolution may decrease partial
volume effects that directly affect the metabolic data and would likely improve the
detectability of medial temporal changes. Finally, elderly patients often take many
medications and have comorbid illnesses, both of which could affect the brain metabolic
data.

4.5 Conclusions
FDG PET scans from subjects who were normal or diagnosed with MCI could be classified
visually as “Normal” or “Not Normal” with good inter-rater agreement. However,
classification of the scans from the MCI group into normal, AD, or FTD was less reliable.
SVM was unsuccessful at classifying MCI patients from normal subjects. Most likely, the
heterogeneity seen at follow-up could account for this. In this sample of MCI patients, 25%
developed dementias other than AD during a 3 year follow-up. Therefore, no metabolic
signature arose in MCI other than the AD-like pattern. SVM was most successful when
using only prototypic normal images or AD-like images from MCI patients indicating that
SVM could succeed when there were consistent patterns. The right parietal cortex provided
the best classification between MCI scans with AD-like pattern from normal controls. With
either whole brain or cluster analysis, the accuracy was about 90%. The designation of MCI
enriches a sample that will develop AD, but a significant number of cases will also develop
other dementias. Identifying baseline scans as AD or FTD met with only partial success
when compared to the follow-up diagnoses at three years. These results suggest that drug
trials targeted at AD pathology should pre-select enrollees with AD-like patterns.
Nevertheless, patients with LBD showed typical AD patterns which would contaminate the
sample unless they were also responsive to the treatment under investigation.
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Figure 1.
Cluster division for SVM based on the subtraction of FDG PET scans of healthy controls
from all MCI patients after age regression (i.e., MCI template). Note the similarity to AD
pattern. Top of image is anterior; image left is patient’s right side. Each cluster has been
colorized to aid in identification.
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Figure 2.
Examples of FDG PET difference images between different individual MCI patients vs.
controls showing examples of presence (A) and absence (B) of an AD-like pattern as well as
one with an FTD pattern (C). The numbers indicate millimeters above the AC-PC plane.
Orientation same as in Figure 1.
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Table 1

Initial PET findings and diagnoses of MCI patients at three years of follow-up.

Scan # Initial Diagnosis Reading (JVP) Reading (MAK) Diagnosis on follow-up

p0024 MCI, Amnestic AD FTD Probable AD†‡

p0025 MCI, Amnestic HC AD MCI, Amnestic†

p0043 MCI, Amnestic AD HC Probable AD

p0046 MCI, Amnestic HC FTD Probable AD

p0047 MCI, Amnestic AD AD MCI, Amnestic

p0078 MCI, non-Amnestic, multidomain AD AD Definite LBD†‡

p0083 MCI, non-Amnestic AD HC Dementia, NOS†‡

p0093 MCI, NOS AD AD Probable LBD†

p0094 MCI, Amnestic, multidomain HC HC Probable AD

p0099 MCI, Amnestic, 1 domain HC AD Probable AD

p0100 MCI, NOS FTD AD/FTD Probable FTD‡

p0102 MCI, Amnestic HC HC Possible AD

p0103 MCI, non-Amnestic HC AD MCI, non-amnestic, Stable

p0106 MCI, Amnestic, multidomain HC HC Possible AD

p0111 MCI, non-Amnestic, multidomain HC AD Probable FTD

p0112 MCI, non-Amnestic, 1 domain HC AD MCI, Non-amnestic, 1 domain

p0113 MCI, Amnestic, multidomain Artifact AD Probable AD

p0115 MCI, Amnestic, multidomain HC AD Probable AD

p0116 MCI, nonAmnestic, multidomain HC FTD MCI, Non-amnestic, multidomain

†
AD-like pattern used for SVM analysis;

‡
deceased; NOS, not otherwise specified; HC, healthy control.
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